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1.1 PSEUDISM

'Electronic structure!, interpreted widely, covers all
that the outer conduction electrons in metals do, and with it
practically all solld state properties, in the sense that the
energy of a vacancy for example 1s given in terms of the energy
of the whole electronic system. The present chapter is concerned
with electronic structure that can be treated theoretically from
a !'fundamental' point of view, 1.e., based on the solution of
the Schr8dinger equation with more or less well-defined and Jjusti-
fiable approximations. The theory of magnetism and of transport
properties come within this definition, and form separate chapters.
Otherwise, untll recent years, 1t was only the band structuree(g)
of an electron with wave vector E)travelling through the periodic
potential that could be discussed from fundamentals, together
with a few immediately related properties such as the electronic
specific heat. A phonon spectrum had to be analyzed in terms of
ad hoc force constants. Now, however, 1t can be calculated in
favourable cases from the same basic potential set up for comput-
ing £ (}5.'). For simple metals, the area that can be treated
'fundamentally! is still centred on the band structure, but has
begun to expand.

The concept unifying much of what we have to say 1s that
of the pseudopotential. While the term 1s relatively new in the

present context, some of the ideas it draws together predate 1t
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qualitatively by twenty years. Recent developments sharpen and
exploit them.
and 2

Figs lAshow the results of measurements on the Fermi
surface of lead (Anderson and Gold 1965). The arcs of circles
are what the Ferml surface would be for perfectly free electrons,
namely the Fermi sphere cut up by Brillouin zone plan;%%l%ie
pieces being translated by appropriate reciprocal lattice vectors
Ag’ and reassembled 1in successive bands £n(k) inside the funda-
mental Brillouin zone (fig. 2). The observed Fermi surface can
be recognized as a modest distortion from the free electron
model, and the same is true of all other metals studied except
the transition, rare earth and actinide metals with incomplete
inner d or/and f shells (seeCh. 2). Moreover the distortions
conform qualitatively and sometimes quantitatively, to what

would be expected on the basis of the nearly free electron (NFE)

approximation.* The band structures of the group IV semiconduc-

*Throughout this chapter we shall not define terms that
may easily be tracked down through the index of J. M. Ziman,

Principles of the Theory of Solids, briefly referred to as Z.

tors diamond, Si, Ge, gray Sn and the III-'V compounds have been
probed by optical interband transitions, and the band structures
inferred from the measurements also interpreted in NFE terms
(see for example, Brust 1964, Cohen and Bergstresser 1966).
Fermi surface measurements coupled with band structure calcula-

tions on the semimetals As, Sb, Bi indicate a NFE situation



there, too (Cohen, Falicov and Golin 1964, Priestley et al 1966,
Lin and Falicov 1966, Falicov and Lin 1966). While the Fermi
surface studies and optical properties provide detailed informa-
tion about a part of the band structure, the soft X-ray emission
spectra give a rough overall picture which in bandwidth and shape
conforms approximately to free electrons.

Although most of the detailed evidence for the NFE pic-
ture has been bulilt up in the last ten years, the beginnings can
already be seen in Mott and Jones' (1936) treatment of diamond
and bismuth, for example, in NFE terms.

The success of the NFE model for the band structure é;(g)
does not imply, however, that the potential VQﬁ) in the solid is
weak or can be treated by perturbation theory, as assumed in most
textbook presentations of the NFE method. VQE) becomes very
strong near the atomic nuclei, much larger than the bandwidth of
the conduction electrons and far too strong to be treated as a
perturbation. Inside the ion core of the metal atom VQs) is a
sufficiently deep potential well to produce several atomic-like
oscillations in the wave function (fig. 3).

The applicability of the NFE model does mean that the
net scattering by an atom is weak. In the augmented plane wave
(APW) or Korringa-Kohn-Rostocker (KKR) formulation of the band
structure problem, each ilon core is surrounded by a sphere of
radius R (fig. 4). E;QE) is determined by solving the Schr8dinger
equation in the Swigs-cheese-like interstitial region, subject to

a boundary condition on the spheres given by the radial derivative
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of the wave function or the phase shift (Z. pp. 87-97). The
inner potential enters only through the latter. We may picture
the core of the atom as a black box (fig. 5) scattering plane
waves weakly from‘z‘to E’+‘g, and can introduce a weak pseudo-
potential v(g) [in Fourier transform] which acting on plane
waves would produce Jjust this same scattering.

How the scattering can be weak when the potential is
strong follows from consideration of the phase shifts )25 whidch

we may write as

’z‘( = rie ;1' + g}g . (1.1)

The integer Pp - chosen so that | SL,I < %W, counts the number of
innter radial nodes. Since the usual phase shift formula for the
scattering (Schiff 1955, p. 105) only involves exp 2 i 72 , any
multiple of m in (1.1) does not contribute and the scattering is
determined by é& which is relatively small. The pseudopoten-
fial therefore is a potential which has small phase shift 52
instead of the large ?ﬁ s and is not strong enough to produce
any oscillations of the corresponding pseudo wave function ¢ in-
side the core.

An explicit pseudopotential VpS is given by (Austin et al
1962)

\/57(: \/C’S - 2¢<%)v¢> (/c. ) (1.2)
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where the y,c are the 1ls, 2s, 2p, etc., orbitals in the ion core.
(Strictly they are the 1s, etc., solutions of the same Hamiltonian
that operates on the valence electrons and so may differ slightly
from the actual orbitals of the core.) It is not difficult to
show (Z. p. 97) that it gilves the same valence elgenvalues in the

pseudo wave equation*

*We use units with 2m = = e = 1, except that energies

will normally be given in Rydbergs where 1 Ry = 13.6 eV.

(-7 +V. )¢ = £

(1.3)

as the real potential does. Since the y/c have definite angular
momenta -ﬁ , the second term of (1.2) picks out and operates dif-
ferently on the different f components of §. If we consider for
a moment only the Z = O component, ¢ is approximately a constant
inside the core because radial oscillations have been eliminated
and an s-state has no angular nodes, and so may be taken outside

the matrix element in (1.4):

Vs(f A2 EV“ 2; (%,\/) VC]¢.(1.4)

The < y’c, V > are the expansion coefficlients of V in terms of
the set Y/c. If we had a complete set, the bracket in (1.4)

would vanish identically. As 1t 1s, the yyc are a flnite
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set of core orbitals which form quite a good expansion set inside
the core. Thus the second term in (1.4) cancels most of the
strong potential V inside the core, as illustrated for a free Si4+
ion in fig. 6. 1In fact, (1.2) is a special case of a more general
cancellation theorem developed by Phillips and Kleinman (1959),
Cohen and Heine (1961), and Austin, Heine and Sham (1962).

Two points must be emphasized. The first is that a
scattering amplitude fimmligto k + g’depends in general not only
on q but also on k, |£'+ EJ and the energy ds~. The same applies

to the pseudopotential, for example the nonlocal operator (1.2),

and what we previously wrote as v(q) should be written
’U’(@, k}/ﬁ@l)E) (1.5)

Actually (1.2) does not have an explicit energy dependence but
some forms of Vbs do, 1in particular those involving the logarith-
mic derivative or phase shift which vary with energy.

The second point is that the pseudopotential is weak
compared with the real potential, too weak to produce radial
oscillations in the pseudo wave function ¢. In many cases it 1is
in fact weak enough to make perturbation theory very useful for
some problems, at least as a first step. But 1t 1s not always
so weak that good answers can be calculated with the lowest
order of perturbation theory to every question in solid state
physics!

In many ways the pseudopotential approach represents a

philosophy rather than a specific method: most calculations



that are done with 1t could be done equally well without ever
using the word. But progress in science means unifying more and
more experience through well-defined concepts which may be ex-
pressed in definite numbers. The pseudopotential serves that
purpose for NFE metals. Ultimately most properties depend on
the interaction of the conduction electrons with the ion cores,
and so can be formulated in terms of v(g). (See, for example,
Harrison 1966). Some properties turn out to be rather sensitive
to the small errors in v(g) which even the best fundamental cal-
culation contain. Here the principle of unifying knowledge
suggests interpreting one set of experimental results in terms
of another: a v(q) may be fitted to the one and used to explain

the other, or both may be shown consistent with a single v(q).



1.2 BAND STRUCTURE CALCULATIONS

The various methods for calculating band structures have
been described well in several texts (see e.g., Z. ch. 3, and
Callaway 1964), and we will restrict ourselves to a few comments
on the practical state of the art.

In a typical metal such as Al, the bandwidth is of the
order of 1 Ry, the band gaps of order 0.1 Ry. An accuracy of
0.01 Ry in calculation is therefore highly desirable, and a few
times 10-3 Ry for narrow bands such as in transition metals.

The augmented plane wave (APW) and Korringa-Kohn-Rostocker (KKR)
methods give a numerical accuracy of 10-3 Ry without difficulty,
and they have been tested against each other by applying both

to the same potentlal (Segall 1962, Burdick 1963). In the
orthogonalized plane wave (OPW) method, convergence becomes very
slow beyond about 0.01 Ry, because the representation of the
inner oscillations of ’V in terms of plane waves and core func-
tions yyc (Z. p. 94) is only an ad hoc MAnsatz® and it requires
plane waves of very short wavelength to make the final corrections
to VV (Abarenkov and Heine, 1965). The success of the method
depends on the fact that the Ansatz is remarkably good for atomic
potentials which become progressively steeper near the origin.

It does not work for a square well with infinitely high walls,
for example. The OPW method has been tested against KKR (Segall

1961). The cellular method has in the past suffered from some
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severe difficulties which Altmann and co-workers report to have
overcome (Altmann 1958). So far there are no results which can
be checked against existing KKR or APW calculations on exactly
the same potential.

Band structure calculations have been done for a few

compounds and stoichometric alloys, e.g., TiC, V_,Si with APW's

5
(Ern and Swit;ndick, Mattheiss 1965) and CuZn by the KKR method
(Johnson and Amar 1965). Such work requires professionals. On
the other hand, for a simple metal the KKR method is very easy

to use, 1if the structure is becc or fece for which the required
structure constants have been tabulated. Even for these the con-
stants are only available along symmetry lines in the Brillouin
zone, but these may serve to give qulte a good picture of the

band structure. Such calculations can be very useful as a guide
in interpreting, for example, de Haas-van Alphen measurements (see
ch. 2) on the Fermi surface. The OPW method is next in difficulty,
still falling within the competence of an enthusiastic amateur.

An APW calculation may take two years to develop from scratch.
However, at least one experimentalist has learnt to use existing
programmes to calculate a band structure as an aid in interpreting
hls data. The OPW and APW methods have been extended to include
spin-orbit coupling, and in the case of APW all other relativistic
effects (Welsz 1966, Loucks 1965a). The APW and KKR methods ex-
perience no difficulty with any kind of band structure but the

OPW appears less sultable for narrow d (or f) bands such as in

transition metals.
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From §]1we can expand the Schrddinger equation in plane
waves acted on by a pseudopotential, which will be relatively

weak for NFE band structures. Indeed any secular equation of the

det [{ (kg)'~ € Fog + Ty [[=0 v

can be interpreted that way with Ijég' as the pseudopotential

matrix elements. The OPW and APW methods fall in this category:

Fgg, (OPW) = Vg_gl + Sc_ (E“éc_)(é"‘g ’C>(C-/E‘g'>
~ o (1.7)

j, (13-9'IR)
[ '(APW)_(Lf,fK/_Q){ [(r-9)- (k- 3)‘5JJ e

®, (X3
R, (RE)

+ 5 (224)F, aByy) j,(18-31R)], (lk-gIR)
=0

(1.8)

(where egg, is the angle between‘gig and Ef%:’
_(). the volume of the unit cell, and (R’
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the derivative of the radial wave function a{) Another one has

been derived recently by Ziman (1965) from the KKR method:

Fgg' (KKRz )

(1k-5IR) Jo (lk=3’IR) P

- Z‘aw; ’ Jl cool;. /)
B 2(2“0 l Jg (KR) jo (%R) &
(1.9)
/
where cot }ZL = Cthl ) ('NR)/;I£ (’KR)) (1.10)

.

This formula presumably has the same excellent convergence in g,g'

and ’)f’(1 =

as the APW method because it is based in the same way on exact
solution of the wave eqguation inside R. It is probably superior
to [? (APW) in that the summation over £ converges much more
rapidly. [’ (APW) involves 6Q£' directly, which tends to the
free spherical wave je at large {i because the radial wave
equation is dominated by the 'centrifugal term! ‘f(fi 1)/r2,
whereas r7(KKRZ) depends through the phase shift only on the
deviation of 6QL from jp - 1In fact, Morgqn (1966) has shown
that

raew) = '(kkRZ) + I°

(1.11)
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where r10 is an 'empty lattice! term which however is not ident-
ically zero. This 1illustrates how the pseudopotential 1s not a
unique quantity: any potential can be used which gives the cor-
rect phase shift or logarithmic derivative CR'/CQ at R.

Another pseudopotential, set up this time in r space, is
simply a square well of depth A inside some model radius RM and

the appropriate Coulomb potential outside (fig. / ):

\/%s " o :EZE /qf (zzi) 0C2 > r< ﬁ?hq )
— 7},///y' 4 :> thq .

1]

]

(1.12)

This 1s the pseudopotential of the bare ion core of charge z, to
which has to be added the potential from the conduction electrons
as detalled below. The well depth A can be adjusted so that (1.12)
reproduces exactly the spectroscopically observed energy levels of
one electron added to the ion (Abarenkov and Heine 1965). A
depends on the angular momentum 8 , and @a in (1.12) is a pro-
Jectlon operator to pick out that component of the total wave
function. Af also has to depend slightly on <E to fit the

whole series of levels of givenlﬂ. The matrix elements, between
plane waves, of the nonlocal operator (1.12) can be calculated
analytically without difficulty and inserted in the secular equa-
tion. The model radius RM may be so chosen that there 1s 1little
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discontinulty in Wsat RM’ thus reducing the high Fourier com-
ponents of Vbs as much as possible (Animalu and Heine 1965).

Incidentally, the eigenfunctions
2 A MF‘(k"S—)‘r (1.13)
3 3 ~

of all these pseudopotential methods correctly represent the wave
function 9Vk in the region between the spheres (fig. 4) (Slater
1966, Morgan 1966).

Before any of these methods can be applied to calculate
E(’}s), the complete potential V or pseudopotential Vps in the
solid has of course to be set up. The potential of the lon core
1s often taken from a Hartree-Fock calculation. On the other
hand, the use of a model potential such as (1.12) fitted to the
spectroscoplic energy levels has the advantage of automaticall&
including exchange with the core orbitals and all internal cor-
relation effects. In some cases, such as the d states 1n noble
metals, a different functional form inside RM has been found bet-
ter than the square well. To obtain Ae for.& p3 1 at the energy
required in the solid, often entails some extrapolation from the
atomic energy levels where‘Ae has been determined, and this can
introduce a little uncertainty in the method.

As regards the conduction electrons, often the potentials
of neutral free atoms are taken and simply superposed. These are

usually from Hartree-Fock-Slater calculations (HFS, with the

Slater (1951) approximation for exchange), which have been pub-
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lished for all elements. After this potential of superposed
atoms has been constructed, it has to be averaged to spherical
symmetry inside the radius R for use in the APW or KKR method.
It is also approximated to by constant (some average value)
between the spheres for the KKR method, while variations about
this constant can be incorporated with APW's if desired. Ex-
change with the core and conduction electrons is then usually
treated by the Hartree-Fock-Slater approximation. Although the
procedure of superposing neutral atoms is somewhat arbitrary,
it has yilelded many useful answers (See, for example, Loucks
1965b). Herman (1964) has used OPW's to solve for the wave
functions and made the whole potential self-consistent, again
within the HFS scheme.

The use of pseudopotentials allows us to approach the
whole problem of setting up a self-consistent potential for the
conduction electrons in another way (Cohen and Phillips 1961).
We first need the pseudopotential Vbsb of a bare ion, usually
calculated from (1.7) or the model potential (1.12), though
there 1s no reason why other forms should not be used. The
next step is to treat the conduction electrons as a uniform
negative Jelly into which the lons are planted. The pseudo-

potential of the whole system is

(consl’) + Zjl "Jb(j) exp éi‘z (1.14)

’2)’"(3) i ﬁ-:jvﬁb,wp(—di'f)d[:,

(1.15)
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(We write vb(g), leaving the other variables of (1.5) understood.)
The electron gas does not contribute to the Fourier components
vb(g) in (1.14%) becuase it is uniform. It only cancels the in-
finite g = O component which the ions alone would give. We now
allow the conduction electrons to react with the 'bare' pseudo-
potential (1.14) and screen it. A Fourler component /3£% of the
charge density 1s set up, proportional to the fapplied! ;btential
vb(g) in lowest order of perturbation theory if we treat Vb(g)

as weak. (The method therefore only applies in NFE cases. )

The result of a self-consistent calculation is to reduce vb(g)

to

(1.16)

where € (g) is the appropriate screening factor or 'dielectric
constant! (Z. pp. 126-9). The pseudopotential for the whole

\/ = (M) 'I’z; U(ﬂ) -2xp ‘g'[ (1.17)

The point is that since the pseudopotential acts on pseudo wave
before being perturbed)

functions which are plane wavejgfwe can take €E(g) from the

theory of the free electron gas. Such is the principle of the
method, but there are several points of detail to be inserted.
Since the Vbsb is nonlocal, the screening is not simply given by

a multiplicative factor as in (1.16) and has to be calculated
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nonlocally (Harrison 1963, Animalu 1965). The charge density of
the conduction electrons is not uniform, even in lowest approxi-
mation, because of the oscillations of Vﬁ(iﬁ.the core (fig. 3),
resulting in a reduced density there (the T.orthogonality hole!')
and a heaping up to a density z(1 +<i) electrons per atom outside
the core. Here & is the order of 0.1 and the effect may be in-

P in (1.15). Exchange and correlation with

b

corporated with Vbs
the core electrons is included in Vbs of the ion. Exchange and
correlation with the conduction electrons produces a hole which

moves with the electron and contributes an exchange and correla-
tion energy /A&Xc(k) for the state k. To a first approximation

it is uniform because the electron gas is uniform, but it fluc-

fuates somewhat due to the charge density fluctuation /Dg'

That contribution can be included in (1.16), the best method at

present probably being to calculated € (g) with a short range

screened exchange interaction treated in the Hubbard approximation

(Sham 1963, 1965). We obtain

e(q) =If6+4)(3—§3-? (I -

3
31 + /QFz-i’ }?SL %(j)

(1.18)

where - Lk.— gt 2ke — 8
%(3):-(33: E.FO) 7 + ggk': /6"( ZkF +94

(1.19)

Here 6}0 1s the free electron Fermi energy‘ﬁekFe/Qm.
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where’fhe term [,...] in (1.18) comes from the exchange and kS
is the screening parameter taken as (EkF/#)% in atomic units.
The effect of the orthogonality hole in modifying the screening
1s taken into account crudely by the factor 1 + & in (1.18).
These are small points. The usefulness of the dielectric screen-
ing method depends on the fact that € (g) =1 as g —> e@ and
is already of order 1.2 at the first reciprocal lattice vectors.
Thus a 10°/, error in the screening, i.e., in €(g) - 1, results
only in a 2°/, error in v(g) in (1.16). The /ﬁgxc(k) can be cal-
culated at the Fermi level from formulae for the total exchange
and correlation of the electron gas. As nearly as theory or
experiment can tell (10-20°/,, see for example, Pines 1955),
/u,xc(k) may be taken as constant throughout the band. Finally
there is a rather small and rather uncertain correlation correc-
tion which may be added, coming from the fact that correlation
with core electrons and with conduction electrons is not additive
as assumed implicitly so far. We merely mention these points to
indicate how far it is possible now to treat all the interactions
between nonlocality, self-consistency including the orthogonality
hole, exchange and correlation (see, e.g., Animalu and Heine 1965,
Harrison 1966). In one calculation on Si self-consistency,
exchange and correlation were computed with the calculated Bloch
functions (Phillips and Kleinman 1962).

A complete review of band structure calculations up to
1962 may be found in Callaway (1964), with its useful list of
references including the titles of all the papers to serve as one=

line abstracts. Some further calculations are listed by Heine (1965).
A good general text is Slater (1965).
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1.2 ANALYSIS OF NFE BAND STRUCTURES

In § 1 it was emphasized that the band structures of
many metals and semiconductors can be described in NFE terms
with a pseudopotential v(g) for scattering by a reciprocal lat-
tice vector g. In §2 we saw how to calculate v(g), but for
really useful results one needs to achieve an accuracy of 0.0l
Ry or better, which is difficult when one has cancellations be-
tween quantities inherently of magnitude 1 Ry in a complicated
self-consistent many-body system. We shall therefore discuss
the analysis of experimentally measured band structures to yield
the 'observed' pseudopotential v(g). These pseudopotentials can
then be correlated with atomic properties to describe trends in
Ehe band structures across the %eriodic_table, or used to calcu-

ate other properties of the metals as in

A typical analysis is that of Harrison (1959) and Ash-
croft (1963) on the Fermi surface of aluminium as determined by
the de Haas-van Alphen effect (ch. 2). We start with the secular
equation (1.6) of infinite order, where we shall now use v instead
of ’1 and sometimes write it for simplicity with a single argu-
ment %15' while remembering the full nonlocal nature (1.5).

Only the {1113 and {200} Brillouin zone planes cut the Fermi
sphere, the others having only a minor effect on é;(g) near the
Fermi energy é;F' Around the corner W, = (7w/a)(2,0,1) of the

1
Brillouin zone, only the plane waves |k = G, > with
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(r/2)(2,2,2)

(m/2)(%,0,0)

(r/a)(2,2,2)

(1.20)

mix strongly into the pseudo wave function ¢k becuase they lie

near the cormers W, to W, (fig. 8) and are nearly degenerate.

We need only investigate é;(kj in 1/48th part of the zone
~F

around W1 because of the cubic symmetry.

tition the secular equation

[

where h denotes a higher g not
~ s

We can therefore par-

!
hh! hG! r
Gh! eley

transformation of the type

. Kad
B A-BC "B*

I 0

— O (1.21)

of the set (1.20), and apply a

. (1.22)

c-Bxa~1g
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The original ABﬁ*C secular equation (1.21) is split into two
separate ones in the upper left and lower right corners. In
this way we can fold the infinite secular equation (1.6),
(1.21) into a 4x4 secular equation which gives the lowest four
elgenvalues exactly. The terms may be evaluated by expanding
the A™% 1in (1.22) by perturbation theory:

_ Vsh Vig’

V.., = U, ./ -+ i == + s0e ( 4)
‘\6"3 ~§' Z E (B b)l 1.2

q)%a/ = (E—gl’l)'(f)'ﬁpi/> (1.25)

The price that has to be paild for folding into a finite secular
equation is that the second and higher order terms in (1.24)
introduce a 5 and é; dependence into the matrix elements of the
secular equation. In the case of pseudopotentials such‘g and é;
dependence 1s there already, so nothing is lost if the corrections
terms are small. For A€ , Animalu (1965) calculated them to be
about 0.005 Ry. For calculating the shape of the Ferml surface

the Z: dependence 1s immaterial since 1t is set equal to a
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constant é;iF‘ [Incidentally, the & dependence of v(g) does
contribute to the band gap which, at the centre of a zone face,

s equal to

£.-E&, = (-z’g/v’(é)/ég)
+ <“2[_§/’U'(f',))’2,g>,

(1.26)

where é; s and é;p are the s-like and p~-like states at the band
gap. ]

The Fermi surface of Af was fitted with the 4x4 equation
(1.23) with the VGG' treated as local, i.e., a function of |§;§'|

only. Thus there were only two parameters which were found to

have the values (Ashcroft 1963)

()= 00179 Ry, T(00)= 00562k

(1.27)

The number of decimal places witnesses to the accuracy of the fit,

much higher than one could expect from fundamental calculations

except by chance. But it is at first sight very surprising that

such a good fit was obtained with constant v matrix elements in

view of the considerable nonlocality of v(g) (fig. 9). The

reason 1s that a particular'?GG, only has a major effect on the
~

shape of the Fermi surface when E:g, Efﬁf are both near the Fermi
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level, i.e., when the scatfering by‘g—g' is nearly between two
points on the Fermi sphere. The values (1.27) represent'VGG,
for that geometry (fig. 10). ~

In a study of Si and Ge (Brust 1964: see also simllar
work on compound semiconductors by Cohen and Bergstresser 1966)
the band structures as inferred from optical and other data were
fitted successfully using thgﬁﬁgifﬁecular equation (1.6) with
v(111), v(220), v(311) as three (constant) parameters and all
higher Vgg' set equal to zero. Again many of the matrix elements
are probggly gulte spurious because of the real nonlocality, but
as one calculates different bands and different k particular
matrix elements enter very strongly in a way similar to fig. 10
and the numerical values correspond to that situation.

As band structures become more precisely established,
it is unlikely that fitting with constant matrix elements will
suffice. This has already been found in Mg where there is a
large amount of very precise de Haas-van Alphen data (Starke,
private communication), and in Bi (Golin 1967). The need then
arises for a model of the matrix elements with a small number of
physically meaningful parameters. We can always split the pseudo-
potential (in r space) into some mean local potential which acts
equally on all e components of (]), plus some nonlocal parts.

The local part glves constant matrix elements and may be treated
as before. Alternatively a simple one-parameter model has been

found useful by Ashcroft (1967). The cancellation theorem and

fig. 6 suggest we may take the bare pseudopotential of an ion as
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zero inside some adjustable radius RA which is nearly that of the

ion core, and -z/r outside. We obtain

(3
eoc) g‘,é‘/ -O. 81 E(ﬂ)
(1.28)
where € (g) is the screening factor (1.18) and g = Lg—g‘l. A

second parameter can of course be introduced by giving the well
a depth as in fig. 7. The nonlocal part may be expressed as the
deviation of the Ap in (1.12) from the mean. By adjusting Ry
we have chosen this mean to be zero, and if we regard only ( =0

and 1 as important at such small r, we may put

Vienboe = HWi‘OOl)) V<R'q> (1.29)

—- O r > I?F? .
- Y,

We write

K= Ik-&l,  Kk'= -7,

(1.30)
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then the matrix elements of (1.29) for K=K' are

2m R * A ‘ Z -1 \
V nontoe gg' = A {EJo(x)j - co:)XJ\(z)
g

301~ L)Lt - e o1

(1.31a)
and for KiK'
Vnonloc, GG!
z}iﬁ:—ﬂrg K 60,670 = K| (=) § ()
_S(K +Kzl—3){m (z)J (x) = K' (x’)J"(x)}}
(1.310)

There is no reason why RA in the local and nonlocal parts should
be exactly the same. If the {f = 2 potential 1s thought to be

unusually strong, such as in Ca and perhaps K just before the 3d
transition series (Vasvari, Animalu and Heine 1967), then we can

take the e = 2 potential as the local one and write instead of
(1.29)

VR F)O%—F)’O?’ r< Ry

(1.32)
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In (1.31) the first two terms in the curly bracket must then be
multiplied by A and the remainder by A'.

As already described, the Fermi surface of Af was fit-
ted by a folded U4x4 secular equation with Vv matrix elements,
whereas the band structure of Si with a large (essentially infinite
order)secular equation and matrix elements of v. The former has
the advantage of smaller size and incorporation of some higher
order correction in an effective matrix element. The arbitrari-
ness of the pseudopotential (subject always of course to its
being a valid pseudopotential) results in varying behaviour
for v(g) at large g. By summing up some of this into what is a
partial t-matrix (1.24%), one has included higher order Born
approximations and arrived at a more invariant quantity, since
all pseudopotentials must give the same final scattering and
band structure. If the summation in (1.24) is extended over all
ﬁ; , 1t defines in fact the t-matrix. However, the use of a small
finite secular equation also has two disadvantages. Firstly the
correction terms in (1.24%) and v depend to some extent on the
structure considered, whereas v is the pseudopotential for one
sScreened atom, so that there 1s some error in transferring values
of v found by fitting the Fermi surface in one structure to another
situation. Secondly the 4x4 secular equation is only good near
W. At K in the zone (fig. 8), there are three plane waves in the
lowest degenerate set, and two (7/a)(-5/2,0,3/2), (w/a)(3/2,0,-5/2)
in the next highest set of which only the former is included in

the four k-G's. In principle the ﬁ;dependence of the higher
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order corrections in the v matrix elements compensates for this,
but in practice such an asymmetry is a serious drawback and Melz
(1966) could not get an unambiguous fit to his measurements on
the change of Ferml surface around K with pressure.

We conclude it may be better to use a large secular
equation with v matrix elements, than a reduced one with v
elements. In that case there is a problem because (1.28), (1.31)
do not drop off very rapidly at high'g's due to the discontinui-

ties in the potentials Vbsb assumed in real space. We may remedy

this by assuming instead a smoothed pseudopotential

gvsb(ﬁ') F(ﬁ‘f/) Ac’ (1.33)

where F 1s a Gaussian smoothing function. The effect on the matrix
elements (1.28), (1.31) is to multiply them by D(g), the Fourier

transform of F, which is also a Gaussian
-— L
Dy = exp (- Bg*). (1.34)

The limited experience at present suggests v(g) can be taken to
cut off at about 3kF3 and B may be chosen accordingly.

Spin orbit coupling VSO may be included by writing

<I3,- (z,\),\/so ! ,{‘;" ,\G.',) \)'>

A A

= LA spp o (R-GIA (h- &)

(1.25)
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’ .
where ‘9,'9 denote the components of the Pauli spin matrices

S S

x? Sy’ sz. Somewhat more complicated expressions may be de-
rived from OPW's (Weilsz 1966) or the square-well model potential
(Animalu 1966).

The band structures change systematically both wilth
valency z and within one column of the periodic table. Since
only a fraction of the pseudopotentials have been determined
experimentally, we show the trends from the calculated v(g),
which however have been found in fair agreement with observed
ones for several metals. Table 1 glves the approximate hypo-
thetical band gaps

£.- & =~ 2v(g)

(1.36)

for the z = 2 and 3 metals if they occurred in the bee structure
with their normal atomic volume. (This structure was chosen
because the Brillouin zone is bounded by only one type of zone
face, the {110}‘.) We note the z = 3 band gaps are systematically
lower than the z = 2 ones. This reflects the fact that the ion
cores of the z = ? atoms are smaller relative to the atomic radii,
making gR, in (1.28) small and mostly less than %w so that v(g)

is negative. Within elements of the same 2z, Es - Ep decreases
as the atomic number Z increases in accordance with the lowering
of the s-state relative to the p-state in the free atoms (Cohen

and Heine 1958, Austin and Heine 1966, Heine 1966).
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1.4 OTHER ELECTRONIC PROPERTIES OF NFE METALS

The total energy and behaviour of metallic systems is
almost entirely determined by the conduction electrons. In NFE
metals their interaction with the lons is completely describable
by the pseudopotential. We might therefore hope to formulate in
terms of v(q) everything from the energy of a vacancy to the scat-
tering of electrons in a liquid metal, from the electron-phonon
interaction to the structure of alloys. Indeed some progress
along these lines is slowly being made (Harrison 1966).

We may formulate the total pseudopotentlial in the system

for an arbitrary set of atomic sites Sn in the manner of (1.17):

1.37)

V(,':):W) +Z; S(l') v(g) exp 52'5 L

S(z) = (‘/N) Zh WP("—‘Z'én);

A

(1.38)

where N 1s the total number of atoms in the system and S(S) the
same structure factor as in X-ray or neutron diffraction. There
is no difficulty generalizing (1.37) to more than one atomic
specles.

In order to make further progress we clearly need to

know v(q) as a function of q. We have shown in §2!how it may
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be calculated, but have emphasized repeatedly in §§ 2 and 3 that

it 1s difficult to achieve the last 0.01 Ry or so in accuracy

though thils is important for the applications. The wise thing

is therefore to let nature tell us the answer and take v(q) from

an analysis of, say, the observed Ferml surface determined from

de Haas-van Alphen measurements in the manner of 5. This 1is
for o luminium

illustratedAin fig. 11. The two points on the right are the

values (1.27) at the (111) and (200) reciprocal lattice vectors,

and the point at g = 0 is

vio) = — % /N (E)

(1.39a)

2.
~ - 3 EFo
(1.39b)

fixed by basic theory (Z. pp. 130, 177). Here W(EF) is the
density of states at the Fermi level per atom, and é?FO the free
electron Fermi energy. A whole curve for v(q) was calculated
from fundamentals. It missed passing through v(111) and v(200)
by 0.01 Ry, and was then adjusted slightly to fit them. We may
therefore take this as a reliable interpolation of v(g) from the
observed points (fig. 11)(Asheroft and Guild 1965).

The resistivity of molten aluminium can now be calcu--

lated. It is proportional to (ch. 6)

2ke 1 "
SO [Se | 1ol 93 dg

(1.240)
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where S(q) v(g) is the matrix element of the potential (1.37) for
scattering by wave vector g. Here IS(q)I2 for the liquid was
taken directly from X-ray measurements, and excellent agreement
with the observed resistivity was obtained (Ashcroft and Guild
1965). It is important to observe that in (1.40) one needs the
matrix element of the nonlocal pseudopotential relevant to scat-
tering on the Ferml sphere, and this is precisely the geometry
to which the experimentally determined points v(111l) and v(200)
on fig. 11 relate, as shown in fig. 10. In fact many properties
of metals are concerned with processes around é;F’ for example
the resistivity of the solid at high temperature due to phonon
scattering, and the enhancement of the effective mass at low
temperature by the electron-phonon interaction (§“1.5). Both
these were calculated for Af and good agreement with experiment
obtained (Ashcroft and Wilkins 1965). The self-consistently
determined potential (1.15), (1.16), (1.37) solves then the old
question of 'rigid ion' versus 'deformable ion' in the electron-
phonon interaction (Sham and Ziman 1963%). The pseudopotential
moreover becomes the intermediate vehicle for interpreting one
set of properties in terms of another. A further example is the
deformation potential in Si calculated by Kleinman (1963) with
the OPW form.

The success of such calculations depends of course on
the transferability of v(qg) between one material and another.
A rather more drastic test of this was made for Sb. The pseudo-

potential of Sb, as determined from the optical properties of
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InSb, was used to calculate the band structure of Sb semimetal.
In antimony several bands are nearly degenerate around EF and
a good starting approximation for v(q) is necessary to obtain
even qualitatively a unique pilcture. Only small adjustment of
v(qg) was required to fit the observed Fermi surface (Falicov and
Lin 1966). 1In transferring pseudopotentials a correction should
be made for change in atomic volume, the.fL:1 in (1.15). Also
€ (g) in (1.16) depends on the electron density. For indium in
InSb, should one take the mean density of four electrons per
atom, or just three? These are nonlinear effects not included
in the simple dielectric screening method: it 1s probably best
to take a density of three electrons. Fig. 12 shows v(g) for
indium determined by Cohen and Bergstresser (1966) from the
optical properties of InP, InAs, InSb, after scaling to the
but withewt odjusting the screeming.
atomic volume of indium meta%t There is clearly some scatter
about a smooth curve indicating variations in the screening.
More remarkable is the smallness of the variation. Part of the
explanation is that e.(q) is about 1.1 to 1.2 for fthese qg's,
so that the valence electron density already contributes little,
Paraqra
and variations in environment have only very small effect. / We
now discuss the total energy LJ of the whole system up to
second order in the pseudopotential, and its application to
various properties. To lowest order we treat the atomic poly-
hedron as a sphere of radius Ra and the electrons as a free

electron gas, or rather single OPW's with an orthogonality hole.

This energy LJ » Which we shall discuss further in § 7, depends
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only on the volume of the system, not the atomic positions’§n.

We are here interested in the structure dependent energy of atomic
rearrangements at constant volume. It is (see, e.g., Cohen 1962,
1963; Harrison 1963, 1966; Sham 1963% Blandin 1963} Pick and
Sarma 1964; Heine and Weaire 1967)

Us = Ug + ZZ I S(Z)ll [ru(g,gzﬁ(;)%(y,).

(1.41)

Here LXE is the Ewald or Fuchs (1935) energy of point ions of
charge z¥* in a uniform negative background, less -0.9 z*eeg/Ra
already included in LJO' The remainder of (1.41) comes from
second order perturbation theory applied to (1.37) and we shall
define /3 and’x as we derive it. The largest contribution to

(‘S is the sum of one-electron energies é; Q&). The second order

contribution to & (5) from a single q is
-~

YR
I S(q,) ’U'(Q,),
k’- - (5+q,)7' (1.42)

Lo d

This has to be summed over all occupied states inside the Fermi
surface, which to second order may be taken as the unperturbed
Fermi sphere. We obtain

| Scg) /u-(VI?' X (q9)

(1.43)
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where ?5 is the perturbation characteristic

/

o d

(1.44)

whose value has already been given in (1.19). As is well known
in Hartree-Fock theory, certain electrostatic and exchange terms
have to be subtracted from the sum of the eigenvalues éz'QE), as
otherwlse they would be counted twice in the total energy Lj .
That is the origin of %3 in (1.41). When exchange and correla-
tion in the total energy are treated by the Hubbard-Sham
approximation (Sham 1963, 1965), it turns out K? is the same as
€ (1.18), but this would not be so in a more complete many-body
treatment. Summation over E’then gives (1.41).

In the step from (1.42) to (1.43), we have treated |Sv]
as a constant factor and applied the summation only to the
denominator. Since v(g) is in fact nonlocal, this is an approxi-
mation which need not be made but is not as serious as might at
first appear (see Harrison 1966, p. 43). In (1.4%), all terms
with % and Efﬂ,bOth inside the Ferml sphere cancel exactly since
they correspond to mixing wave functions inside the single Slater
determinant. The largest contributions to (1.41), (1.43) comes
when the energy denominator goes to zero at the limiting point
where %kis just inside and.ﬁfg{just outside the Fermi sphere.

The error is therefore not large if we take v(q) for scattering

on the Ferml sphere as before, and we shall term this the limit-
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ing point approximation. The reader is referred to Harrison (1966)
and Kleimman (1966) for various details concerngggcﬁﬁrﬁg;ﬁggggéf?zy
hole, exchange, etc. +b LA-

One of the most fruitful applications of (1.41) has been
to the calculation of phonon spectra (Sham 1963),

The phonon frequency 1s simply a measure of the energy of a lat-
tice wave distortion. Fig. 13 shows one recent such calculation
for A (Animalu, Bonsignori and Bortolani 1966), computed from
a pseudopotential based on the model (1.12) and quite close to
fig. 11. With the same pseudopotential Hodges (1967) has calcu-
lated the stacking fault energy of Al as 195 ergs cm—2 compared
with the experimental value 280 ¥ 50 ergs cm—2 (Edington and
Smallman 1965).

A1l workers have found that the results of such calcula-
tions depend rather sensitively on v(g). The mean structural
welght ]S(q)]2 in g-space is given simply by the mean atom den-
sity, and any structural chénge merely shifts it around. One
is effectively differentiating lrv(q)] 2. Moreover there is
always a cancellation between the two terms in (1.41), leaving a
net small quantity. The Ewald term always opposes distortions
from a regular symmetrical structure, whereas the band structure
term reduces this since it describes the screening by the electron
gas. A pseudopotential fitted to two experimental points as in
fig. 11 leaves open considerable uncertainties particularly about

the behaviour at large g and the nonlocal corrections. There is

also doubt about the exchange and correlation energy in fg(q),
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and the orthogonality hole. The most frultful procedure may

therefore be to consolidate all the uncertainties into
L
$.(q) = [y pcf;)”)é(g,). (15)

With a calculated or experimentally determined pseudopotential
as starting approximation, @is(q) can be fitted to the measured
phonon spectra, and then applied to stackling fault calculations,
phase changes ( §7), and the structure of liquids (Johnson et al
1964).

The energy (1.41) may be Fourier transformed to an effec-

tive pailr potential g?(zﬁ between ions (Cohen 1962, Harrison
1966):

* 2 .
P(r)= - %“ M %rég@) r T aimGrigdy.
(1.46)
At large r it turns into the Friedel wiggles:
2 coaldRer
T t) | v(2ke) — 3
?N(W)E F:( (ZRFr)
(1.47)

In the present formulation, the asymptotic form (1.47) arises from
the reglon §q & 2ky in the ‘integration: (1.46), where 7fﬁas its

most rapld varilation (see §'7).
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It corresponds therefore to neglecting the variation of v(gq).
Blandin (1966) has applied this approximation to stacking
fault calculations, among other things, where the arrangement
of nearest neighbours does not change. While Hodges (1967)
has not found it a satisfactory approximation for detailed
numerical calculation, it does give an illuminating picture of
the broad trends with valency.

Everything so far has been based on perturbation theory
and the assumption of a weak pseudopotential. In a regular
crystalline structure, even a complicated one, this condition
is satisfied, as it 1s too 1n a crystal distorted by a lattice
wave or a stacking fault, because the atom density is very uni-
form. However in a vacancy, near an interstitial, or at a surface,
the potential becomes strong due to the large v(g) at small g
(fig. 11). ['Strong! and 'large' compared with v(q) at the
reciprocal lattice vectors, not with bare atomic potentials. ]
Perturbation theory no longer suffices. It is necessary to solve
for the t-matrix (Messiah 1961) and do the self-consistency cal-
culation in terms of it. Bennemann has developed a new iteration
procedure for calculation t especlally for potentials peaked in q
space aroung q = 0 as v(q) is (fig. 11), and applied it to prob-
lems of bond formation, work function, and formation and migration
energles of vacancies and interstitials in group 4 semiconductors

(Bennemann 1964, 1965).




1.5 LANDAU QUASI-PARTICLES

In metals the Coulomb interaction between conduction
electrons is typically of order 1 Ry, qulte comparable with the
bandwidth. It is therefore at first sight surprising that a
model of 1ndependent particles in one-electron Bloch orbitals
V/ s such as we have been.using, is at all relevant. The entity
moglng through the metal is an electron surrounded by a denuded
region, the correlation and exchange hole. Its energy is defined
by the zero of the inverse Green function Go—l(gﬂf’é:)’ and we

can write a SchrbBdinger equation for the motion of the whole quasi-

particle

]

o+ V(o) + M= &)Y = 0,

(1.48)

where M is the 'proper self energy' operator describing the ex-
change and correlation with the other conduction electrons. For
a free electron gas it reduces to /,Lxc(k) defined in §2. Since
the quasi-particle moves through a periodic medium, all the con-
cepts of‘brspace, the Bloch theorem and Brillouin zones, remain
valid.

There is, however, one qualification: the quasi-particle

has a finite 1lifetime and the energy an imaginary component. There
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is a residual screened Coulomb interaction between quasi-particles,
so that a quasi-particle k above the Fermi surface may collide
~y

with one‘\l’(1 in the Ferml sea which is scattered tof& while the

2
original quasi-particle recoils to‘53. Both energy and momentum
have to be conserved 1n the process, the former implying that‘gl,

k, and k, must all like within an energy | € (k)- CF{ of the Fermi
L d o~

5
level where é:(is) is the original quasi-particle energy. This
requirement puts a severe limitation on the range of collisions
which are possible when é;-é%ais small, and the lifetime of
the quasi-particle tends to infinity as (E:-f}J-g. The Fermi
surface itself is therefore perfectly sharp (Mott 1956), as is
indeed found in the de Haas-van Alphen effect where features of
the Fermi surface on the scale of 10-3 to 10_4 Ry may be studied.
The effect is well known in the soft X-ray emission spectra where
the cut off at the Fermi level is sharp, but the transitions from
states near the bottom of the band are broadened of the order of
0.1 Ry. The broadening of states well above é?F,is presumably
comparable.

In many phenomena cne is only concerned with low energy
exciltations very close to EE:F produced by electric and magnetic
fields and thermal excitation. For such situations the states
of the whole electron system may be specified by a distribution
(fk - f°k) of quasi-particles just above é;F and quasi-holes just

~

a4

below. Here f°k is the Fermi-Dirac distribution at T = 0, and we

Lo gl

write the quasi-particle distribution as (fk - f°k) to preserve
lad r~
similarity to the ordinary discussion of independent particles.
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The total energy of the system (to second order in

£ - f°k) may be written (Landau 1956)
o~

~r

U = Z/S E(L’;) (WCB"'F,:)

+3 2’,3,3, 7(‘3>'3') (fi - \Cg)(ﬂg ~fer),

(1.49)

where (E!Ef) represents the interaction energy of quasi-particles,
and the variables K{E' are taken to include a specification of spin.
Before we discuss the contribution of IZ to various properties, we
must say precisely what we mean. As mentioned in §2 and in
connection with (1.48), the one-quasi-particle energy 65(59 con-
tains an exchange and correlation term '/ixc(z) which was stated
to be almost independent of &: This is true to within 10°/, for a
NFE metal and in any case becomes a bit meaningless well below éEIF
because of the lifetime broadening. However near EZF where é;(:g)
i1s well defined, detaliled calculations (Rice 1965 and references
there) suggest that the k dependence of /A(xc for a free electron
gas contributes up to 10°/, to the electron velocity ’DE/D‘E k.
These are certainly many-body corrections but they are incorporated
in the E:(E) and hence already included in the independent parti-
cle model. We are concerned with further corrections arising from
the interaction 7(_{{',13) in (1.49).

The best known example 1s the enhancement of the spin

paramagnetism. The simple Paulil result /482\/\[( €F) for the
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susceptibility counts only the single-quasi-particle energy
é;(k) (z. p. 286), whereas turning some spins over alters the
total exchange energy of the system in a way that enhances the

susceptibility. From (1.49) the susceptibility becomes
L
v = /U.B N(f,:) (3‘50)
| - V

wheve /MB s the DBohr Maﬁnefonj'and

YA
Y = ~ NE) (2mr)°

dSe  dS (&1, K'1) - n (k1K)
Xg SE /2K, W@? - 7

When BEZQkhls small as in transition metals, Y may exceed
unity, =  resulting in a formally infinite susceptibility and
hence a spontaneous ferromagnetic polarization.

Another important application of (1.49) is to the elec-
tronic specific heat. In thermal equilibrium there are equal

numbers of excited quasi-particle just above any element dSk of

Lo d

Fermi surface, and quasi-holes below. Their contributions exactly

cancel in the second term of (1.49) and the electronic specific

heat is given by the usual formu1a~% W? K° VN’(&EF) in terms of

the one-quasi-particle density of states \M( EF)

The energy of a quasi-particle may be considered modified
n the
(moIecular field sense by the interaction from the other guasl-
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particles present:

r) = E(ﬁ) + Q_rr)df[fb,(g)—f;]
7(k, k') dk’

£(k

J

s
The local energy é: of a quasi-particle may depend on r since fk

o d
in general does, and we can define a 'local Ferml surface! or

(oo d
surface of equal chemical potential by 6_ (k,r) = EF As usual

in transport theory, we write

'Ft(r) _ ‘6: _ _¢‘3(£) D'F!:' /an (1.52)

Lo d

where kn is the component of’g normal to the Ferml surface. Then
¢ measures the distance in E'space that the Ferml surface has been
distorted from equilibrium. Alternatively the quasi-particle
distribution may be defined in terms of the distortion y/k(z)
[not to be confused with the wave function ?V ] from the 'Ebcal

Fermi surface! (Heine 1962):

Y- 4, (smrtan)” (8, &) By d Sy .

(1.53)

Lo d

The Boltzmann equation is

¢, € H f°
D2t Ry, ~k

3
+en R ’ E/ 2k, = L‘. jscaﬂ'erinjf'(l'%)
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(nk is the unit normal on the Fermi surfaqf;l:D

R

(Eé_order to solve 1it, one must express it completely in terms of
¢ or yV, but we have written a hybrid form to exhibit each term
at its simplest. The time-dependent term must depend on the com-
plete quasi-particle distribution ¢ and not /V s Since ET in
terms of which y’ 1s defined also changes with time. The drift
term however involves yy because the other quasi-particles
exert accelerations through V QE,%;) which keep ér'constant.

The scattering term involves ¢k/t£5) in a relaxation time approxi-
mation since the relaxation is of the whole system to equilibrium.
However’if we write a collislion integral for elastic scattering,
that depends on v’ since é? is conserved (Silin 1958, Heine
1962).

The total current may be written

T-ec@) 1w, ¥ 4% (1.55)

~

In the case of time-independent processes, (1.54) and (1.55) in
terms of yV are formally identical with the equations in the
independent quasi-particle model if we assume elastic scattering.
There are then no Landau corrections to the transport properties.
This conclusion still holds for thermal currents and in the
presence of statlc magnetic filelds, and applies for example to
the Wiedemann-Franz law. Time-dependent transport properties

in general do have corrections through the first term in (1.54).
In the case of the anomalous skin effect, the corrections tend

to zero in the extreme anomalous 1limit (Silin 1957) because the




displacement is such a sharp spike around the Fermi equator as
pictured by the ineffectiveness concept (Z. p. 244). The same
applies to the cyclotron freguency under Azbel-Kaner conditions,
which remains as normally defined in terms of the Ferml velocity
9&(x)/2% x (2. pp. 250, 255). 1In the opposite limit when the
electric field 1s uniform over the cyclotron orbit as realized
in semiconductors, there are Landau corrections. It would be
interesting 1f with ultrasonic waves one could cover the crucilal
range betweén the two extremes.

A more fundamental formula for the total current 1s

T= (2#w)7° SJ " <‘Cg— ‘C‘;) R (1.56)

in terms of the current ék.carried by a quasi-particle. Thils 1is

not e Vi but
. 3y = , R k“ aJE; /.
Jk = e[/u’f. + (3 k) jbh 7(”’ ) 2 (1.57)

In the case of a free electron gas, l.e., with interaction but
zero periodic potential, the momentum of a quasi-particle must
ve K k and the current (e/m)hlb. Then (1.57) reduces to the

Landau identity

'r .

1
M m¥ R

(1.58)
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&)

and 75 is the mean interaction for parallel and antiparallel sp

where m* =4 k/V;iiE;;; result means that for a free electron gas
certain exact cancellations of many-body corrections can take
place. For example, the !'semiconductor' cyclotron mass becomes

the baré electron mass m, which is what the usual formula for

the cyclotron mass would give if applied to the Hartree band struc-
ture'ﬁekg/em without the exchange and correlation terms /ALXC(k).
That ma& partly explain why'g;g' perturbation theory 1is so success-
ful in fitting the observed cyclotron masses in semiconductors
because the gag perturbation theory also breaks down for the ex-
change and correlation potential.

The 7(‘5,%") considered so far is the screened Coulomb
interaction. There is another one, the interaction via virtual
phonons. As 1is well known since it is the origin of supercon-
ductivity, an electron moving through the lattice attracts the
positive ions in its immediate neighbourkood, and their small
displacement to the centre results in an attractive potential for
other electrons. It contributes also to the self-energy & (‘{(‘),
analogously to‘/AXC(E). At absolute zero of temperature we may

write

ER)= €.k + gop|

(M (s, ey )] o
E.(R) = E(Reg)-7

(1.59)

where éEe is the purely electronic energy and Ubt the matrix ele-

ment for emission of a phonon g of energy Y  with the electron

~ %
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being scattered to Efﬂ' If we consider‘%'just below the Fermi
surface, the scattering can only contribute as in (1.44) if E&E
is an empty state above éEIv the contribution being large only
if k and lf,"‘i lie within &, (the Debye temperature) of éF The
distortion of the band structure is shown in fig. 14. The reduc-
tion in the Fermi velocity is about 35°/, in A¢ , a factor of
two in Pb, for example, as observed in the cyclotron mass and
electronic specific heat (Ashcroft and Wilkins 1965). At high
temperatures the effect disappears because with the thermal
excitation of quasi-particles there are terms with positive
energy denominator which cancel the negative ones. The general
framework of the Landau theory still applies, even at finite
temperature, and it turns out that time~-independent transport
processes are unaffected by the phonon contributions, 1l.e.,
the interaction 7 (E,E') cancels the effect of the distortion
(fig. 14) of the single quasi-particle spectrum (Prange and
Kadanoff 1964). The anomaly of fig. 14, being intimately con-
nected with the discontinuity at the Fermi surface, rides up
and down with E;F,if the electron density is altered, which
allows one to derive an identity between the reduction in
BE/BK in the one-quasi-particle energy and the mean value
of LZ (’lg ,kc_') around the Fermi surface.

The reader is referred to Nozi®res (1964) for a general’
development of the Landau theory with referencesto the literature,
to Prange and Kadanoff (1964) for its formulation with the phonon

interaction, and to Heine, Nozidres and Wilkins (1966) for a re-
view of its application to the screening and scattering of pseudo-
potentials.
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TABLE 1. Approximately band gaps 2v(g) for
hypothetical bcec structures (in
Ry.), from calculations by Animalu
and Heine (1965).

Be Mg Zn cd Hg
0.19 0.06 0.05 0.04 0.02
Al Ga In Tl

0.05 -0.01 -0.03 -0.10
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FIGURE CAPTIONS

Flg. 1 The free electron Fermi sphere (light) and the observed
Fermi surface of lead (heavy), shown with Brillouin
zone planes in extended‘g,space. (After Anderson and

Gold 1965).

Fig. 2 Similar to fig. 1, but with the various parts of the
Fermi surface joined together inside the fundamental

Brillouin zone. (After Anderson and Gold 1965).

Fig. 3 Real wave function f/ and pseudo wave function 75
of an electron in a NFE metal. Rc is the radius of

the 1on core.
Fig. 4 (No comment)

Fig. 5 The pseudopotential v(qg) defined in terms of the scat-
tering amplitude of an atom, pictured as a black box,
for scattering of electrons fromf& to k+q.

o

Fig. 6 The potential and pseudopotential (for -0 states)
of a Siu+ ion. The potential V is expressed in the
form V(r) = Z(r)/r and Vbs similarly in terms of Zps(r).

Note V and Vbs both become equal to the Coulomb potential




Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
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-4/r outside the core which has a radius of about one

Bohr unit. (After Cohen and Heine 1961).

A model pseudopotential for an ion of charge z.

Brillouin zone for face centred cubic lattice, showing

points of high symmetry.

Pseudopotential v(g) for aluminium, showing its non-
local nature. The top and bottom curves are for
backward and forward scattering respectively (5; and
’5+g,para11el and antiparallel in eq. 1.5), whereas

the middle curve is for scattering on the Fermi sphere

as in fig. 10. (After Animalu, private communication).

Scattering on the Fermi sphere.

Pseudopotential of aluminium.

Pseudopotential v(q) for indium, as fitted from @ InP,
® InAs, and < InSb, all scaled to the atomic volume
of metallic indium, and X from indium metal. The
curve is calculated from the model potential (1.12)

and (1.16). (After Animalu and Heine 1965).
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Calculated (continuous curve) and measured (eircles)

phonon spectrum of aluminium. (After Animalu et al

1966).

Effect of electron interaction via virtual phonons on
the band structure near the Fermi level at absolute

zero of temperature.

Band structure of copper (schematic).

Q'M)’
The perturbation characteristic ’6'(q), eq. (1.19)34

A
in units of 'ngo

The energy-wave number characteristic (schematic).

Positions of q, and 2kF of divalent and trivalent
metals, together with structural weights of fcc,

hep and bee structures, all in units of 27 /A.

Band structure energy in 8 cone model. (Weaire,

private communication).
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